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Abstract
In this paper, I present recent studies on vacuum polarization energies and
energy densities induced by QED flux tubes. I focus on comparing three-
and four-dimensional scenarios and the discussion of various approximation
schemes in view of the exact treatment.

PACS numbers: 03.65.Nk, 03.70.+k, 04.62.+v

(Some figures in this article are in colour only in the electronic version)

1. Introduction and motivation

In this paper, I will present calculations of vacuum polarization energies that we [1] have
performed for flux tube configurations in QED. Flux tubes in QED coupled to fermions
exhibit interesting phenomena, such as the Aharonov–Bohm effect [2], its consequences
for fermion scattering [3], parity anomalies [4], formation of a condensate [5] and exotic
quantum numbers [7–9]. Those (non-perturbative) features of the theory that give rise to these
unusual phenomena make the analysis more difficult, especially in calculations that require
renormalization. The investigation in [10] and the worldline formalism in [11] have addressed
some of these issues. Here we provide a comprehensive approach employing techniques from
scattering theory to analyse quantum energies of flux tubes.

Our primary motivation for this analysis is to shed light on vortices in more complicated
field theories, especially the Z-string in the standard electroweak theory [12]. The Z-string
is a vortex configuration carrying magnetic flux in the field of the Z-gauge boson. Since the
classical Z-string is known to be unstable [13], the existence of such a vortex would require
stabilization via quantum effects [14], perhaps by trapping heavy quarks along the string.

We compare the one-loop energies and energy densities of electromagnetic flux tubes in
D = 2 + 1 and D = 3 + 1 spacetime dimensions. The classical calculation is of course the
same in the two cases. The quantum corrections to the energy could possibly be very different
[11] because of the different divergence structure. In D = 3 + 1, the bare one-loop energy is
divergent and requires renormalization. In D = 2 + 1, in contrast, the bare energy is finite.
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However, a comparison between the two dimensionalities is sensible only when we use the
same renormalization conditions, which induces a finite counterterm in the D = 2 + 1 case.
Without this finite renormalization, the D = 2 + 1 and D = 3 + 1 energies are qualitatively
different.

We also study this problem to analyse several technical puzzles associated with the
computation of the one-loop energy of a flux tube. An efficient way to compute the energy
is to use scattering data of fermions in the background of the flux tube. However, vortex
configurations give long-range potentials, that do not satisfy standard conditions in scattering
theory [15], which usually guarantee the analytic properties of scattering data. In turn, these
properties are crucial to compute the vacuum polarization energy from scattering data. Hence,
we observe subtleties that emerge only because an isolated flux tube is unphysical, and once
a region of return flux is included, the scattering problem is well defined. In the limit where
the return flux is infinitely spread out, the energy density becomes entirely localized at the
original flux tube.

2. Theory

We consider the QED Lagrangian

L = − 1
4 (∂µAν − ∂νAµ)2 + ψ̄(i∂/ − eA/ − m)ψ, (1)

where Aµ is the Lorentz vector that represents the photon field and ψ is the spinor of a fermion
with electric charge e. In D = 3 + 1, ψ is required to have four components. Though that is
not necessary in D = 2 + 1, we may nevertheless choose so.

In radial gauge, the flux tube configuration reads

A0 = 0, �A = F

2πr
f (r)êϕ, B(r) = F

2πr

df (r)

dr
, (2)

where B denotes the magnetic field. For a Gaußian flux tube, we thus find

fG(r) = 1 − e−r2/w2
, BG(r) = BG(0) e−r2/w2

, (3)

which implies that the net flux FG = πw2BG(0) and the classical energy

Ecl = 1

2

∫
d2r B2(�r) (4)

in D = 2 + 1. For D = 3 + 1, the identical expression gives the classical energy per unit length
of the flux tube. We adopt the one-loop approximation wherein the background fields consist
only of gauge fields; so do the external lines of the Feynman diagrams. Thus, we only consider
fermions loops in the one-loop approximation and the only relevant counterterm Lagrangian
is

Lct = −C(D)

4
FµνF

µν. (5)

It is natural to impose the renormalization condition that at zero momentum transfer the
photon wavefunction is not altered by quantum effects. This yields C(3) = − e2

6πm
and

C(4−ε) = − e2

12π2

(
2
ε

− γ + ln 4π
m2

)
in D = 2 + 1 and D = 3 + 1 − ε dimensions, respectively.

Note that the renormalization coefficient is finite in D = 2 + 1 while we have employed
dimensional regularization in D = 3 + 1. The corresponding counterterm energy (resp.
energy per unit length) is

E
(D)
ct = C(D)

2

∫
d2x B2. (6)
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3. Fermion determinant

We obtain the vacuum polarization energy from the fermion loop by computing the functional
determinants

E(3)
vac = lim

T →∞
i

T
[ln Det(i∂/ − eA/ − m) − ln Det(i∂/ − m)] + E

(3)
ct ,

E(4)
vac = lim

T ,Lz→∞
i

T Lz

[ln Det(i∂/ − eA/ − m) − ln Det(i∂/ − m)] + E
(4)
ct .

(7)

Again, we consider the energy per unit length of the flux tube. Note that by inclusion of the
counterterm contribution the above expressions are ultraviolet finite. In order to perform this
computation, we have to consider the non-trivial (static) background field Aµ(�x) �= 0 of the
flux tube, cf equation (3) in the Dirac equation:

[�α · (�p + �A(�x)) + βm]
 = ω
. (8)

The interaction induces a potential for the fluctuating fermions’ fields with two essential
properties. First, bound states with energies ωj may emerge. In magnitude, these energies
are smaller than the fermion mass m.1 Second, the continuum levels ω = ±

√
k2 + m2 acquire

a non-zero phase shift, δ(k), which translates into a modification of the level density,
�ρ(k) = 1

π

∑
,±

d
dk

[δ(k)]. Here  is the orbital angular momentum quantum number
according to which the modes decouple and k is the linear momentum of the fluctuating field.
We then find the vacuum polarization energy

E
(3)
δ = −1

2

∑
j

(|ωj | − m) +
1

2π

∫ ∞

0
dk

k√
k2 + m2

∑


δ̄(k),

E
(4)
δ = − 1

8π

∑
j

(
ω2

j ln
ω2

j

m2
+ m2 − ω2

j

)
− 1

4π2

∫ ∞

0
dk k ln

k2 + m2

m2

∑


δ̄(k),

δ̄(k) = δ(k) − δ
(1)
 (k) − δ

(2)
 (k).

(9)

In D = 3 + 1, the energy per unit length is obtained from the interface formalism of [17].
It is important to stress that we have subtracted the first two orders of the Born series from
the integrand to render the integrals finite. We will add back these pieces in the form
of Feynman diagrams, E

(D)
FD . The identity between the Born and the Feynman diagram

contributions at a prescribed order has been verified within dimensional regularization [18]
and tested numerically, see e.g. appendix B of [19]. This procedure has the advantage that the
renormalization conditions from the perturbative sector of the theory may be adopted [20]. To
this end, the renormalized vacuum polarization energy reads

E(D)
vac = E

(D)
δ + E

(D)
FD + E

(D)
ct . (10)

4. Embedding

Configurations like equation (3) with non-zero net flux induce potentials that behave like
Veff(r) ∼ 1/r2 as r → ∞ in the second-order differential equations for the radial functions
from which we extract the bound-state energies and phase shifts. This behaviour violates
standard conditions necessary to deduce the analytic structure of scattering data in the complex
momentum plane. As a direct consequence, we observe that the phase shifts are discontinuous

1 For the flux tube configurations only threshold states with |ωj | = m occur. The configurations that we consider in
section 4 do not have any bound states.
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Figure 1. The integrands of E
(3)
δ , equation (9), with (black dashed lines) and without (red full

lines) return fluxes for R = 6/m (left panel) and R = 26/m (right panel).

as k → 0 and Levinson’s theorem cannot be employed to reliably predict the number of bound
states. Though this is not a principle obstacle because we have other means to find the bound
states and any singularity at k = 0 is integrable in equation (9), it puts doubts on the use of
scattering data for this computation. The analytic structure is furthermore mandatory to relate
the matrix element of the energy momentum tensor to formulae like equations (9) and (10)
that underlie our computation of the renormalized vacuum polarization energy. At the same
time, we observe that configurations with zero net flux are unrealistic. This becomes obvious
from the Bianchi identity:

εαβµν∂βFµν = 0. (11)

In D = 3 + 1, this identity comprises the well-known Maxwell equation �∂ · �B(�x) = 0 stating
that magnetic field lines must be closed or extend to spatial infinity outside the region of
interest. The latter scenario is not adequate for the study of the vacuum energy which requires
to integrate over full space. In D = 2 + 1, the Bianchi identity becomes ∂B

∂t
= −∂xEy + ∂yEx .

This implies that it is impossible to create (static) net flux configurations from zero flux. This
may cause inconsistencies as we want to compare energies of configurations with and without
fluxes. We therefore superimpose a return flux configuration according to

BR(r) = − 16FG

πR2(1 + 256(r2/R2 − 1)2)(π/2 + arctan(16))
,

B0(r) = BG(r) + BR(r).

(12)

In the following, we will refer to this configuration as the zero net flux configuration. It is
straightforward to verify that limR→∞ Ecl[B0] = Ecl[BG] and limR→∞ EFD[B0] = EFD[BG].
That is, the return flux does not contribute to the classical and counterterm energies as
the position R of the return flux is sent to spatial infinity. The crucial question obviously
is about the behaviour of Evac[B0] as R → ∞. To see what happens, we compare the
integrands of E

(3)
δ for configurations with and without fluxes for two values of R in figure 1.

The integrand corresponding to B0 oscillates around that corresponding to BG and these
oscillations diminish as R increases. This indicates that indeed limR→∞ Evac[B0] = Evac[BG].
In order to unambiguously decide on that question, we have to consider the energy density.
This will allow us to distinguish between the contributions from the centre flux tube and the
return flux.
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Figure 2. The left panel shows the energy density ε(r) for various values of the return flux position
R in D = 2 + 1. The right panel is the analogue for the energy density per unit length of the vortex
in D = 3 + 1.

5. Energy density

As motivated above, we consider the vacuum polarization energy density

ε(r) = 2πr〈T00〉 (13)

to decide whether or not a vacuum polarization energy can be attributed to a single flux
tube. Here 〈T00〉 denotes a specific matrix element of the energy momentum tensor Tµν in the
background of the zero net flux configuration. As for the total energy the energy density is
computed from three entries,

ε(r) = εδ(r) + εFD(r) + εct(r), (14)

the contribution from scattering data, εδ(r), with appropriate Born terms subtracted to render
the momentum integrals finite, the Feynman diagram contribution, εFD(r), as the Born
subtractions must be added back and the counterterm contribution from Lct, equation (5).
For the details on this computation we refer to [1], in particular for the discussion on how the
counterterm contribution cancels the UV divergences without the need for additional surface
counterterms. Of course, a general consistency condition is that equation (10) is obtained from
the spatial integral

∫ ∞
0 dr ε(r). This requires to consider zero net flux configurations because

only then the analytic properties of the scattering data are guaranteed that underlie the proof
of that identity, cf [21].

In figure 2, we display the energy density as a function of the return flux position, R. A
number of conclusions can be drawn from these numerical studies: (1) the energy density
in central region of small r is independent of R; (2) the integrated density from that region
gives limR→∞

∫ R/2
0 dr ε(r) = Evac[BG]; (3) the energy from the return flux diminishes as

its position is sent to infinity, i.e. limR→∞
∫ ∞
R/2 dr ε(r) = 0. Altogether this is good news

as it clearly confirms the naı̈ve method that only considers a single central flux tube. The
discontinuities in the phase shifts at k = 0 do not propagate to the vacuum polarization energy.

6. Approximation schemes for Evac[BG]

Having established a reliable method for the computation of the vacuum polarization energies
of flux tubes provides a good opportunity to employ this method to judge approximation
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Figure 3. Renormalized one-loop energies in D = 2 + 1 (left panel) and D = 3 + 1 (right panel),
for fixed values of the magnetic field at the origin, as a function of the width of the Gaußian flux
tube. The lines correspond to the derivative expansion to second order [5]. The dots, circles, etc
represent the exact results for Evac. From top to bottom, eBG(0)/m2 = 1.1, 2, 2.5, 3, 4, 5.

schemes. Most popular are the derivative and perturbative expansion schemes. In both cases,
we will study the dependence of the vacuum polarization energy on the width w, introduced in
equation (3). It is important to consider variations of the background field that are consistent
with the respective scheme. For example, for the derivative expansion to be appropriate
we require configurations that vary slowly but keep the amplitude BG(0) fixed. In contrast,
for the perturbative expansion we wish to consider different amplitudes and thus keep the
magnetic flux FG fixed as we change w. The results for the derivative expansion are shown
in figure 3. In both cases, D = 2 + 1 and D = 3 + 1, we find good agreement between
the exact result and the leading contributions in the derivative expansion, even though the
derivative expansion is known to be an asymptotic expansion and hence does not converge
when summed to all orders [6]. In the perturbative expansion, we evaluate the leading Feynman
diagram,

E
(D)
FD = 8πF2

(4π)D/2

∫ ∞

0
dp

[∫ ∞

0
dr

df (r)

dr
J0(pr)

]2 ∫ 1

0
dx

x(1 − x)p�(2 − D/2)

[m2 + p2x(1 − x)]2−D/2
, (15)

in D = 2 + 1 and D = 3 + 1 dimensions with the effective expansion parameter F = e
2π

FG.
The UV divergence has not yet been removed from the diagram, equation (15), and the
counterterm part has to be added. This is illuminating especially for D = 2 + 1 because
with our renormalization condition it changes the leading behaviour from F/w2 to F2/w4.
Stated otherwise, renormalization is essential even for finite quantities. The change in this
leading behaviour is crucial to obtain agreement between the exact results and the perturbative
expansion, both in D = 2 + 1 and in D = 3 + 1, cf figure 4.

Obviously, the approximation schemes work well for the D = 2 + 1 and D = 3 + 1 cases.
Furthermore, the vacuum polarization energies are negative and decrease with the width of the
background flux tube for both cases. Also the energy densities (per unit length in D = 3 + 1)
are similar in structure as can, e.g., be seen from figure 2. As discussed above, to obtain these
similarities it has been crucial to impose identical renormalization conditions. Having done
so, it is to be expected that the simpler D = 2 + 1 case can be utilized to gain information
about vacuum polarization energies of vortex configurations in more complicated D = 3 + 1
problems [16].
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Figure 4. Renormalized fermion vacuum polarization energy in units of F2 as a function of the
width, for various fixed values of the flux F (2.5, 4.5, 6.5, 8.5 from top to bottom) in the Gaußian
flux tube. The full line represents the leading perturbation expansion contribution. The left panel
is for D = 2 + 1 and the right panel for D = 3 + 1.

7. Conclusions

In this paper, I have reported on computations that we have performed for one-loop energies
and energy densities of electromagnetic flux tubes in three and four spacetime dimensions.
In general, this vacuum polarization energy contains ultraviolet divergences and an important
feature of our approach is that it allows us to impose the standard renormalization conditions
of perturbative quantum electrodynamics. Even though the calculation in three spacetime
dimensions does not suffer from such divergences, a meaningful comparison between three and
four dimensions can only be made when identical renormalization conditions are imposed. The
use of scattering data to compute the vacuum polarization energy of an individual flux tube leads
to subtleties arising from the long-range potential associated with the flux tube background,
which does not satisfy the standard conditions of scattering theory. Consequently, the scattering
data do not necessarily have the standard analytic properties required to relate the vacuum
polarization energy to scattering data. We have therefore considered field configurations in
which the flux tube is embedded with a well-separated return flux so that the total flux vanishes.
We have constructed a limiting procedure in which this return flux does not contribute to the
energy, enabling us to compute the energy of an isolated flux tube.

We do not find qualitative differences between three and four dimensions for either the
energy or the energy density, once identical renormalization conditions have been imposed.
However, we stress that renormalization in the case of three dimensions proved essential to
this result because the (finite) counterterm contribution turned out to be large, thus causing
sizable cancellations in the final result.

This study gives an initial step towards understanding flux tubes and vortices in more
complicated theories. In particular, the similarities between the three- and four-dimensional
cases can be used to determine whether quantum corrections stabilize the classically unstable
strings in the standard model [16].
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